Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ UPCommons. Portal de...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Recolector de Ciencia Abierta, RECOLECTA
Bachelor thesis . 2009
License: CC BY NC ND
versions View all 3 versions
addClaim

Circuit approaches to physical cryptography

Authors: Jun Gallart, Tamara;

Circuit approaches to physical cryptography

Abstract

Nowadays keeping information safe is one of the most important research topics in Computer Science and Information Technology. Consequently, many techniques of Cryptography and Security are continually being proposed. In this thesis we will investigate a novel approach to Cryptography, Physical Cryptography: This suggests the application of optical and electrical nanostructures to cryptography and security, to complement standard, algorithmic procedures. Using physical objects enables security solutions with novel features. This thesis focuses on the introduction and analysis of two specific techniques related to Physical Cryptography: SHIC (Super High Information content) systems allow the user to keep a high amount of information safe from external attacks: The architecture of these circuits forces an extremely slow-read out of the data. This specific characteristic prevents the system from being completely characterized by the attacker when this has gained temporal access to the circuit. UNIQUE objects are the other field to study in this work: Here, only small amount of information is protected. Its fast internal speed makes it physically impossible to being reproduced or imitated by an intruder. We will present two techniques and propose possible physical circuits that implement SHIC and UNIQUE: SPICE and Sentaurus TCAD simulators will be used for making analog-circuit and device-level simulations respectively, in order to study and conclude the feasibility of both proposals.

Projecte realitzat en col.laboració amb el centre Technische Universität München

Country
Spain
Keywords

Àrees temàtiques de la UPC::Informàtica::Seguretat informàtica::Criptografia, Cryptography, Criptografia, :Informàtica::Seguretat informàtica::Criptografia [Àrees temàtiques de la UPC]

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 31
    download downloads 217
  • 31
    views
    217
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
0
Average
Average
Average
31
217
Green