
handle: 2066/63833
Color matching in Content-Based Image Retrieval is done using a color space and measuring distances between colors. Such an approach yields non-intuitive results for the user. We introduce color categories (or focal colors), determine that they are valid, and use them in two experiments. The experiments conducted prove the difference between color categorization by the cognitive processes color discrimination and color memory. In addition, they yield a Color Look-Up Table, which can improve color matching, that can be seen as a model for human color matching.
HMI-HF: Human Factors, BNAIC, Memory, Discrimination, Modeling, Cognitive artificial intelligence, Content-Based Image Retrieval (CBIR), Color matching
HMI-HF: Human Factors, BNAIC, Memory, Discrimination, Modeling, Cognitive artificial intelligence, Content-Based Image Retrieval (CBIR), Color matching
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
