Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Cardinal points and generalizations.

Authors: W F, Harris;

Cardinal points and generalizations.

Abstract

In the presence of astigmatism a focal point typically becomes the well-known interval of Sturm with its pair of axially-separated orthogonal line singularities. The same is true of nodal points except that the issues are more complicated: a nodal point may become a nodal interval with a pair of nodal line singularities, but they are not generally orthogonal, and it is possible for there to be only one line singularity or even none at all. The effect of astigmatism on principal points is the motivation behind this paper. The three classes of cardinal points are defined in the literature in a disjointed fashion. Here a unified approach is adopted, phrased in terms of rays and linear optics, in which focal, nodal and principal points are defined as particular cases of a large class of special structures. The special structures arising in the presence of astigmatism turn out to be described by mathematical expressions of the same form as those that describe nodal structures. As a consequence everything that holds for nodal points, lines and other structures now extends to all other special points as well, including principal points and the lesser-known anti-principal and anti-nodal points. Thus the paper unifies Gauss's and Listing's concepts of cardinal points within a large class of special structures and generalizes them to allow for refracting elements which may be astigmatic and relatively decentred. A numerical example illustrates the calculation of cardinal structures in a model eye with astigmatic and heterocentric refracting surfaces.

Related Organizations
Keywords

Optics and Photonics, Astigmatism, Humans, Eye, Models, Biological

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    9
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
9
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!