Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Hyper Article en Lig...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
CNR ExploRA
Part of book or chapter of book . 2023
Data sources: CNR ExploRA
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Microplastics in freshwater environments

Authors: Mihai, Florin; Markley, Laura; Farhan R, Khan; Suaria, Giuseppe; Gündogdu, Sedat;

Microplastics in freshwater environments

Abstract

Plastic pollution in aquatic environments is a recognized environmental threat on a global scale and is fed by the linear economy model of "make-use-dispose," which underpins both the fossil fuel and plastic industries. This chapter examines the issue of microplastic pollution in different freshwater environments: (i) rivers and tributaries, (ii) lakes, (iii) groundwater sources, (iv) glaciers and ice caps, and (v) deltas. Particular challenges, the geographical coverage of studies, and current knowledge gaps are highlighted for each freshwater category based on the currently available peer-reviewed literature. Sources and distribution of microplastics in freshwater bodies and associated repercussions to freshwater ecosystems and human health are also reviewed. A better understanding of microplastic interactions between human settlements and freshwater environments in different parts of the globe is required to better enact evidence-based mitigation measures that will be able to further limit the spread of microplastic pollution in the natural environment. Therefore, research on microplastic pollution in freshwater bodies around the world must be further supported to provide a reliable global database and compliant monitoring procedures. Additionally, further research can better inform policies and regulations around plastic use and emission into the environment at both the global and local scales.

Keywords

[SDE] Environmental Sciences, Water resources, microplastics, glacier, Microplastics, water resources, rivers, plastic pollution, delta, Lakes, Freshwater, Rivers, microplastics plastic pollution freshwater rivers lakes groundwater delta glacier water resources plastic waste, plastic waste, [SHS.ENVIR] Humanities and Social Sciences/Environmental studies, Delta, Plastic pollution, Plastic waste, lakes, groundwater, Glacier, freshwater, Groundwater

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 10
    download downloads 1
  • 10
    views
    1
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
0
Average
Average
Average
10
1
Green