Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao CNR ExploRAarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
CNR ExploRA
Part of book or chapter of book . 2004
Data sources: CNR ExploRA
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IRIS Cnr
Part of book or chapter of book . 2004
Data sources: IRIS Cnr
versions View all 2 versions
addClaim

Environmental stress physiology

Authors: Avigad Vonshak; Giuseppe Torzillo;

Environmental stress physiology

Abstract

Microalgae represent a unique experimental system to study stress responses of photosynthetic organisms. In higher plants, response and adaptation to stress takes place in two levels: The metabolic level and the morphological/structural level. In many cases it is difficult, if not impossible, to determine which is the initial response and which one is just a result of the initial modification. Since microalgae lack the morphological structure that characterizes higher plants they may be used as a unique experimental system to study metabolic and molecular processes associated with the response and adaptation of photosynthetic organisms to stress. The study of stress physiology and acclimation of microalgae also has an important application in further development of the biotechnology for mass culturing of microalgae: 1) When culturing algal cells under outdoor conditions cells are exposed to severe changes in light and temperature much faster than the timescale required for the cells to be able acclimate. A better understanding of those parameters and the ability to monitor those conditions will provide the growers with a better knowledge on how to optimize growth and productivity; 2) Induction of accumulation of high value products is associated with stress conditions. A better understanding of the physiological response may help in providing a better production system for the desired product and at a later stage give an insight of the potential for genetic modification of desired strains; 3) The potential use of microalgae as part of a biological system for bioremidation/detoxification and waste treatment is also associated with growing the cells under stress conditions; 4) Microalgae represent a promising alternative to convert CO2 into high added value products and biofluels. Algae biorefineries may thus alleviate food versus fluel conflicts and may become particularly advantageous for regions with limited biomass availability and land unusable for agriculture. Understanding the process associated with these unique environmental conditions may help in choosing the right culture conditions as well as selecting strains in order to improve the efficiency of the biological process.

Country
Italy
Keywords

stress physiology, photoinhibition, microalgae, photoacclimation, fluorescence

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!