Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ YÖK Açık Bilim - CoH...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Makine öğrenme algoritmaları ile web siteleri tıklamalarının analizi

Analysis of website clicks with machine learning algorithms
Authors: Çoban, Tevfik;

Makine öğrenme algoritmaları ile web siteleri tıklamalarının analizi

Abstract

Bu tez çalışmasında, Türkiye'de yaygın olarak tıklanan web sitelerinin istatistiksel verileri kullanılarak, makine öğrenme algoritmaları ile analizi yapılmıştır. Elde edilen veriler üzerinde makine öğrenmesinin başarısının nasıl gerçekleştiği, bu veriler arasında web sitesi trafiğindeki en belirleyici parametreler tespit edilmiştir. Bu tespitler, hem gözetimli öğrenme algoritmalarından Naive Bayes, Bayes Ağı, K En Yakın Komşu, Destek Vektör Makinesi, ID3 ve C4.5 algoritmaları ile hem de gözetimsiz öğrenme algoritmalarından K-means ve Hiyerarşik Kümeleme algoritmaları ile gerçekleştirilmiştir. Eğitim-test, çapraz doğrulama gibi farklı seçeneklerle ayrıntılı olarak incelenen bu algoritmaların birbirine göre başarı ve performans kıyaslaması yapılarak web siteleri tıklamaları analizi üzerindeki uygun ve uygun olmayan algoritmalar belirlenmiştir.Ayrıca, gözetimsiz öğrenme algoritmaları kullanılarak web sitelerinin kümelendirilmesi gerçekleştirilmiştir. Web sitelerinin türü ve özelliklerinin, ziyaretçilerin tıklama üzerine davranışlarının nasıl değiştiği üzerinde yorumlar ve değerlendirmelere yer verilmiştir.

In the work presented, statistical data of web sites which are the most common clicked in Turkey are analyzed with machine learning algorithms. For website traffic, the most decisive parameters of this statistical data are identified. Both some supervised learning algorithms like Naive Bayes, Bayesian Network, K Nearest Neighborhood, Support Vector Machines, ID3, C4.5 algorithms and some unsupervised learning algorithms like K-Means, Hierarchical Clustering algorithms are used for these determinations. These algorithms are investigated with different options like training ?test, cross validation and performance and success of these algorithms are compared to each other, for the websites clicks analysis appropriate and inappropriate algorithms are selected.Also, using unsupervised learning algorithms websites are clustered. This study include reviews and assessments about effect of type and characteristics of websites on visitor?s click behavior.

116

Related Organizations
Keywords

Web sites, Classification, Computer Engineering and Computer Science and Control, Clustering, Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrol

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average