
Inspired by the classical concept of height of a prime ideal in a ring, we proposed in a precedent paper the notion of height of a prime hyperideal in a Krasner hyperring. In this note we first generalize some results concerning the height of a prime hyperideal in a Noetherian Krasner hyperring, with the intent to extend this definition to the case of a general hyperideal in a such hyperring. The main results in this note show that, in a commutative Noetherian Krasner hyperring, the height of a minimal prime hyperideal over a proper hyperideal generated by n elements is less than or equal to n, the converse of this claim being also true. Based on this result, it can be proved that the height of such a prime hyperideal is limited by the height of a corresponding quotient hyperideal.
Krasner hyperring,prime/maximalhyperideal,Noetherian hyperring,height of a prime hyperideal
Krasner hyperring,prime/maximalhyperideal,Noetherian hyperring,height of a prime hyperideal
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
