
handle: 20.500.11782/667
In this paper, we introduce a new generalization of the r-Stirling numbers of the second kind based on the q-numbers via an exponential generating function. We investigate their some properties and derive several relations among q-Bernoulli numbers and polynomials, and newly defined (q, r, w)Stirling numbers of the second kind. We also obtain q-Bernstein polynomials as a linear combination of (q, r, w)-Stirling numbers of the second kind and q-Bernoulli polynomials in w.
algebra_number_theory, q-Calculus; Stirling numbers of the second kind; Bernoulli polynomials and numbers; Generating function; Cauchy product
algebra_number_theory, q-Calculus; Stirling numbers of the second kind; Bernoulli polynomials and numbers; Generating function; Cauchy product
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
