Powered by OpenAIRE graph
Found an issue? Give us feedback
QSpacearrow_drop_down
QSpace
Thesis . 2010
Data sources: QSpace
addClaim

Evaluation of UNK Cell Capacity to Initiate Pregnancy-Associated Spiral Artery Remodelling

Authors: Bilinski, Michael;

Evaluation of UNK Cell Capacity to Initiate Pregnancy-Associated Spiral Artery Remodelling

Abstract

Transient uterine Natural Killer (uNK) cells are the predominant leukocytes of early gestational human and murine uteri. Murine uNK cells promote changes in endometrial structure including initiation of perivascular smooth muscle reduction in spiral arteries. Less is known about human uNK cell functions due to sampling constraints. Xenogeneic engraftment of human lymphocyte progenitors to alymphoid mice has been useful in understanding human lymphocyte functions in vivo. Irradiation of recipients is required to create a niche for successful humanization of the mice but renders recipient mice sterile. The goal of my thesis was to develop a protocol enabling engraftment of human hematopoietic stem cells in alymphoid mice that would permit differentiation of functional human uNK cells. I then planned to evaluate human uNK cell functions and their regulation in vivo. Neonatal Rag2-/-Il2rg-/- mice, which lack T cells, B cells and NK cells were preconditioned with 5-fluorouracil and inoculated with syngeneic mouse bone marrow cells. As adults, inoculated female mice conceived and differentiated functional mouse uNK cells. In contrast, neonatally-preconditioned Rag2-/-Il2rg-/- mice inoculated with human cord blood hematopoietic stem cells conceived but differentiated non-lymphoid cells in sites normally occupied by uNK cells. Weekly injections of human IL-15, which is required for NK cell differentiation, proliferation and survival, did not promote uNK cell differentiation. Rather, treatment with IL-15 altered gestational uteri, even in mice receiving neither preconditioning nor hematopoietic stem cells. I was successful in developing a protocol that enables hematopoietic stem cell engraftment in neonatal mice without compromising mouse fertility. However, this model is apparently not suitable for in vivo studies of human uNK cell functions.

Country
Canada
Related Organizations
Keywords

Xenogeneic Engraftment, Uterine Natural Killer Cell

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!