
It has been two decades since the first description of Rickettsia felis, and although a nearly cosmopolitan distribution is now apparent, much of the ecology of this unique microorganism remains unresolved. The cat flea, Ctenocephalides felis, is currently the only known biological vector of R. felis; however, molecular evidence of R. felis in other species of fleas as well as in ticks and mites suggests a variety of arthropod hosts. Studies examining the transmission of R. felis using colonized cat fleas have shown stable vertical transmission but not horizontal transmission. Likewise, serological and molecular tools have been used to detect R. felis in a number of vertebrate hosts, including humans, in the absence of a clear mechanism of horizontal transmission. Considered an emerging flea-borne rickettsiosis, clinical manifestation of R. felis infection in humans, including, fever, rash, and headache is similar to other rickettsial diseases. Recent advances toward further understanding the ecology of R. felis have been facilitated by stable R. felis-infected cat flea colonies, several primary flea isolates and sustained maintenance of R. felis in cell culture systems, and highly sensitive quantitative molecular assays. Here, we provide a synopsis of R. felis including the known distribution and arthropods infected; transmission mechanisms; current understanding of vertebrate infection and human disease; and the tools available to further examine R. felis.
Mammals, Cats, Rickettsia felis, Animals, Humans, Siphonaptera, Rickettsia Infections, Insect Vectors
Mammals, Cats, Rickettsia felis, Animals, Humans, Siphonaptera, Rickettsia Infections, Insect Vectors
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 186 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
