
Numerous sense-antisense gene pairs have been discovered in various organisms. Antisense genes play important roles in establishing parentally imprinted gene expression patterns in mammals. Typically, protein-coding sense genes are reciprocally regulated by their non-coding antisense partners. One example for antisense regulation is the Xist (X-inactive specific transcript) and Tsix gene pair, which is pivotal in X-inactivation. Xist works as a functional RNA molecule that recruits repressive chromatin factors towards one of the female Xs for inactivation. Antisense Tsix transcription negatively regulates Xist and protects one X-chromosome in cis from inactivation by Xist. Albeit, the precise molecular mechanism is still obscure it has been shown that Tsix transcription regulates the chromatin structure by altering histone tail modifications and DNA methylation at the Xist promoter. In addition, Xist and Tsix RNA form an RNA duplexes in vivo and are processed to small RNAs, which have a potential regulatory function. Here we review the latest findings and based on ample experimental data consider models for antisense-mediated gene regulation in X-inactivation.
Male, RNA, Untranslated, Transcription, Genetic, X Chromosome Inactivation, Animals, Humans, Female, RNA, Antisense, RNA, Long Noncoding, RNA, Messenger, Models, Biological
Male, RNA, Untranslated, Transcription, Genetic, X Chromosome Inactivation, Animals, Humans, Female, RNA, Antisense, RNA, Long Noncoding, RNA, Messenger, Models, Biological
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 7 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
