Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao LUMC Scholarly Publi...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 4 versions
addClaim

Comparison of Multiplex Ligation-Dependent Probe Amplification and Karyotyping in Prenatal Diagnosis

Authors: Boormans, E.M.; Birnie, E.; Oepkes, D.; Galjaard, R.J.; Schuring-Blom, G.H.; Lith, J.M. van; MLP Karyotyping Evaluation MAKE St;

Comparison of Multiplex Ligation-Dependent Probe Amplification and Karyotyping in Prenatal Diagnosis

Abstract

OBJECTIVE: To estimate whether multiplex ligation-dependent probe amplification (MLPA), a molecular technique used for detecting the most common chromosomal aneuploidies, is comparable with karyotyping for the detection of aneuploidies of chromosomes X, Y, 13, 18, and 21 in routine clinical practice and to estimate the costs differences of both techniques. METHODS: In this prospective, nationwide cohort study, we consecutively included 4,585 women who had an amniocentesis because of their age (36 years or older), increased risk after prenatal screening, or maternal anxiety. Amniotic fluid samples were tested independently with both MLPA and karyotyping. The primary outcome was diagnostic accuracy of MLPA to detect aneuploidies of chromosomes X, Y, 13, 18, and 21. Secondary outcome Measures were turnaround time for test results and costs. A sample size was calculated using a critical noninferiority margin of 0.002; therefore, at least 4,497 paired test results were needed (one-sided alpha 0.05, power 0.90). RESULTS: Diagnostic accuracy of MLPA was 1.0 (95% confidence interval [CI] 0.99-1.0), sensitivity was 100% (95% CI 0.96-1.0) and specificity was 100% (95% CI 0.999-1.0). Diagnostic accuracy of MLPA was statistically similar (noninferior) to that of karyotyping (P<.001). In 75 cases, MLPA failed (1.6%); karyotyping failed once (0.02%). Compared with karyotyping, MLPA shortened the waiting time by 14.5 days (P<.001, 95% Cl 14.3-14.6) and cost less (-47, P<.001). CONCLUSION: In routine clinical practice, diagnostic accuracy of MLPA for detection of trisomies X, Y, 13, 18, and 21 is comparable with that of karyotyping, and it reduces waiting time at lower costs. (Obstet Gynecol 2010,115:297-303)

Country
Netherlands
Related Organizations
Keywords

rapid aneuploidy detection qf-pcr chromosomal aneuploidies cytogenetic diagnosis full karyotype mlpa women hybridization experience future

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Related to Research communities
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!