Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Edinburgh Research A...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 1 versions
addClaim

Investigating endothelin receptor B signalling during myelination

Authors: Swire, Matthew;

Investigating endothelin receptor B signalling during myelination

Abstract

A key process enabling the correct functioning of neural circuits involves the formation of multi‐layered membranous myelin sheaths around axons. Myelin sheaths, made by specialised glial cells called oligodendrocytes in the central nervous system (CNS), metabolically support underlying axons and speed up electrical impulse conduction, aiding efficient communication between neurons. As only a subset of axons in the CNS are myelinated, with unique patterns developed therein, it raises the questions: how does an oligodendrocyte choose which axon to myelinate and what regulates the amount of myelin made? The production of myelin sheaths by the oligodendrocyte, is under strong influence from of a range of signals including those mediated by G protein‐coupled receptor (GPR) superfamily members. One GPR, Endothelin receptor B (EDNRB), best known for regulating blood flow, had previously been demonstrated to both positively and negatively influence myelination. I have investigated how EDNRB regulates myelination using an in vitro myelination assay, alongside in vivo analysis in zebrafish and mice. These systems identified a direct signalling role for EDNRB in the promotion of myelin sheath number. Furthermore, profiling the protein signalling cascade downstream of this receptor identified a range of known and novel factors involved in the regulation of myelin sheath number including the MAPK pathway, Src family kinases, ErbB receptors, protein kinase C ε, NMDAR and AMPAR. Functional analyses of a subset of these factors elucidate how EDNRB signalling, potentially connecting signals from a range of cell types, ensures correct adequate myelination in the CNS.

Country
United Kingdom
Related Organizations
Keywords

oligodendrocytes, myelination, EDNRB

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
Related to Research communities