Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Edinburgh Research A...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Acoustic pulse reflectometry for the measurement of musical wind instruments

Authors: Sharp, David;

Acoustic pulse reflectometry for the measurement of musical wind instruments

Abstract

The bore profile and input impedance of a musical wind instrument provide valuable information about its acoustical properties. The time domain technique of acoustic pulse reflectometry can be used to measure the input impulse response of a tubular object, such as a wind instrument, from which both its bore profile and input impedance\ud can be calculated.\ud In this thesis, after a discussion of the theory of acoustic pulse reflectometry, the operation of a practical reflectometer is described and measurements of input impulse response, bore profile and input impedance are investigated.\ud In general, the experimentally measured input impulse response of a tubular object contains a DC offset which must be removed for accurate bore reconstruction. A new, faster method of determining the DC offset is introduced which doesn’t require prior knowledge of the object’s dimensions.\ud The bore profile of a test object, calculated by applying a lossy reconstruction algorithm to its input impulse response (after removal of the DC offset), is found to agree with directly measured radii to within 0.05mm. Various brass instrument reconstructions of similar accuracy are presented.\ud An input impedance curve, calculated from the input impulse response of the test object, is found to have peak frequencies which agree with those of a theoretical curve to within 0.7% (a considerably better agreement than when a standard frequency domain measurement technique is used). Impedance curves of various brass instruments\ud are presented.\ud Bore reconstructions are used to confirm the presence, and in certain cases, the positions of leaks in instruments. For the special case of a leaking cylinder, the impedance curve is successfully used to calculate the size of the leak.\ud Finally, a method is investigated which allows the practical reflectometer to measure longer objects than previously possible.

Related Organizations
Keywords

KB thesis scanning project 2015

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
Related to Research communities