Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Tuning out of hERG.

Authors: Alex M, Aronov;

Tuning out of hERG.

Abstract

A number of drug withdrawals in recent years have been related to cardiovascular toxicity associated with undesirable blockade of the hERG potassium channel. A promiscuous target, hERG has been demonstrated to interact with pharmaceuticals of widely varying structure. Computational and statistical modeling efforts encompassing homology modeling, pharmacophore and quantitative structure-activity relationship models, and also various classification methods, are aimed at defining the molecular features that confer hERG inhibitory activity and understanding the structure-activity relationships that govern hERG-drug interactions. The organization-wide adoption of hERG models is driven by their ability to produce specific and testable structural hypotheses that lead to compounds devoid of hERG liability.

Keywords

Models, Molecular, Potassium Channel Blockers, Animals, Humans, Quantitative Structure-Activity Relationship, Ether-A-Go-Go Potassium Channels

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    27
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
27
Average
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!