
A number of drug withdrawals in recent years have been related to cardiovascular toxicity associated with undesirable blockade of the hERG potassium channel. A promiscuous target, hERG has been demonstrated to interact with pharmaceuticals of widely varying structure. Computational and statistical modeling efforts encompassing homology modeling, pharmacophore and quantitative structure-activity relationship models, and also various classification methods, are aimed at defining the molecular features that confer hERG inhibitory activity and understanding the structure-activity relationships that govern hERG-drug interactions. The organization-wide adoption of hERG models is driven by their ability to produce specific and testable structural hypotheses that lead to compounds devoid of hERG liability.
Models, Molecular, Potassium Channel Blockers, Animals, Humans, Quantitative Structure-Activity Relationship, Ether-A-Go-Go Potassium Channels
Models, Molecular, Potassium Channel Blockers, Animals, Humans, Quantitative Structure-Activity Relationship, Ether-A-Go-Go Potassium Channels
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 27 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
