Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article . 2019
Data sources: zbMATH Open
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

$\Delta$-Algebra and Scattering Amplitudes

\({\Delta}\)-algebra and scattering amplitudes
Authors: Cachazo, Freddy; Early, Nick; Guevara, Alfredo; Mizera, Sebastian;

$\Delta$-Algebra and Scattering Amplitudes

Abstract

In this paper we study an algebra that naturally combines two familiar operations in scattering amplitudes: computations of volumes of polytopes using triangulations and constructions of canonical forms from products of smaller ones. We mainly concentrate on the case of $G(2,n)$ as it controls both general MHV leading singularities and CHY integrands for a variety of theories. This commutative algebra has also appeared in the study of configuration spaces and we called it the $\Delta$-algebra. As a natural application, we generalize the well-known square move. This allows us to generate infinite families of new moves between non-planar on-shell diagrams. We call them sphere moves. Using the $\Delta$-algebra we derive familiar results, such as the KK and BCJ relations, and prove novel formulas for higher-order relations. Finally, we comment on generalizations to $G(k,n)$.

Comment: 36+13 pages

Keywords

Finite-dimensional groups and algebras motivated by physics and their representations, High Energy Physics - Theory, Supersymmetric field theories in quantum mechanics, field theories in higher dimensions, Mathematics - Combinatorics, supersymmetric gauge theory, \(S\)-matrix theory, etc. in quantum theory, scattering amplitudes

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green