
Two recent, independent advances in ecology have generated interest and controversy: the development of neutral community models (NCMs) and the extension of biogeographical relationships into the microbial world. Here these two advances are linked by predicting an observed microbial taxa-volume relationship using an NCM and provide the strongest evidence so far for neutral community assembly in any group of organisms, macro or micro. Previously, NCMs have only ever been fitted using species-abundance distributions of macroorganisms at a single site or at one scale and parameter values have been calibrated on a case-by-case basis. Because NCMs predict a malleable two-parameter taxa-abundance distribution, this is a weak test of neutral community assembly and, hence, of the predictive power of NCMs. Here the two parameters of an NCM are calibrated using the taxa-abundance distribution observed in a small waterborne bacterial community housed in a bark-lined tree-hole in a beech tree. Using these parameters, unchanged, the taxa-abundance distributions and taxa-volume relationship observed in 26 other beech tree communities whose sizes span three orders of magnitude could be predicted. In doing so, a simple quantitative ecological mechanism to explain observations in microbial ecology is simultaneously offered and the predictive power of NCMs is demonstrated.
Bacteria, insular comunities, Biodiversity, neutral model, Models, Biological, Environmental Microbiology, Fagus, community assembly, dispersal, mathematical model, Ecosystem
Bacteria, insular comunities, Biodiversity, neutral model, Models, Biological, Environmental Microbiology, Fagus, community assembly, dispersal, mathematical model, Ecosystem
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 174 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
