Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

[Human thrombin: drug stability and stabilization].

Authors: M V, Kolodzeĭskaia; V A, Sokolovskiĭ; G L, Volkov;

[Human thrombin: drug stability and stabilization].

Abstract

Stabilization of enzymes is a key factor when using biocatalysis in practice. Each enzyme stability depends both on the structure of its molecule and on the effect of various environmental factors, thus, one of the methods of the enzyme stability preservation is the formation of optimal macromedium. Thus, water structure and enzyme hydration change in the presence of solvable additives that affects its stability and catalytic properties. The paper deals with a new method of stabilization of human thrombin developed by the authors. It is proposed to use some known organic-ligands which have ion group and different nonpolar hydrophobic groups instead of traditional additives (salts, aminoacids, polyols, polyethylene glycols etc.). Thrombin stabilization proceeds in the conditions something changed compared with traditional ones. Processes of thrombin stabilization by the above compound have been investigated, enzyme stability at different temperatures and long-term storage of diluted solutions of the preparation in different conditions have been studied. It has been established that rosselin and orange II are the most efficient ligands. Optimal finite concentrations of stabilizing agents make approximately 0.0012-0.0014 M which are rather low in the system thrombin-ligand. It has been found that diluted solutions of thrombin are more stable, than concentrated ones. In the latter case the process of autolysis is included that affects negatively the catalytic effect of the enzyme, as far as there occurs the change of thrombin molecule structure, especially of thrombin beta-chain sections, evoking conformational changes of some sites of its active centre. The experiments directed to increasing thrombin intensity in the presence of organic ligands rosselin and orange II are discussed in details. Special attention is given to autolytic method of thrombin inactivation. It is admitted on the basis of already obtained data that thrombin binding with organic ligands proceeds at the expense of anionic area of beta-domain of thrombin active centre where basic aminoacids arginin and lysine (Lys 68, Arg 78, Arg 77, Arg 66 etc.) were found. Under these conditions the hydrophobic interaction is provided at the expense of apolar binding of thrombin active centre area.

Keywords

Ions, Coagulants, Drug Storage, Enzyme Stability, Thrombin, Fibrinogen, Humans, Ligands

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!