
Histones, as the basic components of nucleosome, are essential to chromatin structure and function. To adapt to various states of chromatin, corresponding histone variants are incorporated in nucleosome, and certain modifications also occur on the variants' tails. These variants change the conformation and stability of nucleosome to facilitate transcriptional activation or deactivation, DNA repairing, heterochromatin formation, and others. During histone exchange, chromatin remodeling complex facilitates histone variant deposition into nucleosome, and different variants have diverse deposition pathways. Recently, research on histone variants is not only a new hotspot in epigenetics, but also a new annotation of "histone code". In addition, histone exchange reveals new changing mechanism of DNA-histone interaction.
Histones, Transcription, Genetic, Animals, Humans, DNA, DNA Methylation, Chromatin Assembly and Disassembly, Chromatin, Nucleosomes
Histones, Transcription, Genetic, Animals, Humans, DNA, DNA Methylation, Chromatin Assembly and Disassembly, Chromatin, Nucleosomes
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
