
Damage to DNA bases resulting from deamination, oxidation, and alkylation is mainly repaired by base-excision repair. BER is initiated by DNA glycosylases, which recognize damaged bases and excise them from DNA by hydrolyzing the N-glycosidic bond between the base and the sugar phosphate backbone of DNA to generate an abasic site. Different human and E. coli DNA glycosylases have been cloned and characterized, each one with unique substrate specificity. Some of them additionally have AP lyase activity, which enables them to cleave the bond between the sugar and phosphate 3' to the damaged site. BER consist of two repair pathways (short or long) in which one or more nucleotides are introduced respectively. In conclusion, it seems to be likely that BER pathways are essential for genomic repair and stability in living cells.
DNA Repair, Escherichia coli, Animals, Humans, DNA, DNA Damage, DNA Glycosylases
DNA Repair, Escherichia coli, Animals, Humans, DNA, DNA Damage, DNA Glycosylases
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
