
Effects of variation of the stimulus pulse shape on the excitation of a nonmyelinated nerve fibre were studied using a mathematical model based on the Hodgkin-Huxley equations. Efficiency of smoothly changing pulses was compared with that of rectangular pulses. For pulses shorter than the time to excitation, the rate of the stimulus rise did not determine the ability of a smoothly changing pulse to excite the fibre. For a given stimulus duration, the main factor was the pulse area or the charge delivered by the pulse. The strength-duration curve for smoothly changing pulses was a nonmonotonic function, in contrast to the curve for rectangular pulses. The dependence of latency on changes in the pulse area was non-linear. It would be nonmonotonic when the pulse area variation were due to the stimulus duration or the stimulus rise duration. More that one propagating intracellular action potential (IAP) could arise upon fibre activation by a long smoothly changing threshold stimulus. Upon activation of relatively short fibres the IAP could arise not at the site of the smoothly changing stimulus injection. The rectangular pulses of long duration were more efficient than the corresponding smoothly changing ones. Irrespective of the shape, the pulses whose duration at the foot is 1-2 ms, are more suitable for a prolonged threshold fibre activation.
Electrophysiology, Nerve Fibers, Models, Neurological, Synapses, Biophysics, Action Potentials, Animals, Humans, Biophysical Phenomena, Electric Stimulation
Electrophysiology, Nerve Fibers, Models, Neurological, Synapses, Biophysics, Action Potentials, Animals, Humans, Biophysical Phenomena, Electric Stimulation
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 3 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
