
The Higgs boson was predicted in 1964 by British physicist Peter Higgs. The Higgs is the key to explain the origin of the mass of other elementary particles of Nature. However, only with the coming into operation of the LHC, in 2008, there were technological conditions to search for the Higgs boson. Recently, a major international effort conducted at CERN, by means of ATLAS and CMS experiments, has enabled the observation of a new bosonic particle in the region of 125 GeVs. In this paper, by means of known mechanisms of symmetry breaking that occur in the BCS theory of superconductivity and in the theory of nuclear pairing, we discuss the Higgs mechanism in the Standard Model. Finally, we present the current state of research looking for the Higgs boson and the alternative theories and extensions of the Standard Model for the elementary particle physics. Keywords: Higgs boson, BCS theory, nuclear pairing, Higgs mechanism, Standard Model.
Comment: Article in Portuguese. The paper will appear in Volume 35 of the Revista Brasileira de Ensino de F\'isica
Physics - Physics Education, Physics - Popular Physics
Physics - Physics Education, Physics - Popular Physics
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
