Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

Outer membrane vesicles from Neisseria meningitidis.

Authors: Mohammad Reza, Mirlashari; Ernst Arne, Høiby; Johan, Holst; Torstein, Lyberg;

Outer membrane vesicles from Neisseria meningitidis.

Abstract

Flow cytometry was used to study the expression of leukocyte adhesion molecules CD11a, CD11b, CD11c, CD14, and CD62L (L-selectin) and production of reactive oxygen species (ROS) in an ex vivo human whole-blood system stimulated with lipopolysaccharide-containing outer membrane vesicles (LPS-OMV) from N. meningitidis. Results demonstrated a dose-dependent increase in surface expression of CD11a, CD11b, CD11c and CD14 in granulocytes and monocytes (maximal at 30-120 min) upon OMV-LPS challenge, whereas CD62L expression was heavily downregulated (maximal at 30-120 min). The OMV-associated LPS was almost as potent (on a weight basis) as purified LPS from E. coli in inducing adhesion molecule modulation but the response was delayed. Upon stimulation with OMV-LPS or E. coli-LPS, the production of intracellular ROS increased in both granulocytes and monocytes when dihydroethidium (DHE, mainly reflecting superoxide anion) was used as a probe, whereas peroxynitrite production monitored with dihydrorhodamine 123 (DHR) was not significantly changed. The OMV-mediated modulation of leukocyte adhesion molecule expression and increased ROS production may certainly lead to increased entrapment of leukocytes in the microcirculation and contribute to untoward inflammatory reactions as seen in systemic meningococcal disease.

Keywords

Lipopolysaccharides, Secretory Vesicles, Leukocytes, Mononuclear, Humans, Meningococcal Vaccines, Neisseria meningitidis, Flow Cytometry, Reactive Oxygen Species, Cell Adhesion Molecules, Granulocytes

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    7
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
7
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!