
Soluble adenylyl cyclase (sAC) represents a novel form of mammalian adenylyl cyclase structurally, molecularly, and biochemically distinct from the G protein-regulated, transmembrane adenylyl cyclases (tmACs). sAC possesses no transmembrane domains and is insensitive to classic modulators of tmACs, such as heterotrimeric G proteins and P site ligands. Thus, sAC defines an independently regulated cAMP signaling system within mammalian cells. sAC is directly stimulated by bicarbonate ion both in vivo in heterologously expressing cells and in vitro using purified protein. sAC appears to be the predominant form of adenylyl cyclase (AC) in mammalian sperm, and its direct activation by bicarbonate provides a mechanism for generating the cAMP required to complete the bicarbonate-induced processes necessary for fertilization, including hyperactivated motility, capacitation, and the acrosome reaction. Immunolocalization studies reveal sAC is also abundantly expressed in other tissues which respond to bicarbonate or carbon dioxide levels suggesting it may function as a general bicarbonate/CO(2) sensor throughout the body.
Male, Bicarbonates, Solubility, Cyclic AMP, Animals, Humans, Spermatozoa, Adenylyl Cyclases, Signal Transduction
Male, Bicarbonates, Solubility, Cyclic AMP, Animals, Humans, Spermatozoa, Adenylyl Cyclases, Signal Transduction
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 54 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
