
Even partial hippocampal lesions in rats resulted in a disturbance of time interval determination over the course of several months (1200-1500 presentations) other complex conditioned reactions being preserved. As distinct from the control animals, the long period of failure of time interval counting was absent in rats receiving Mexidol. Continuous time conditioning took place in these animals. Due to substantial improvement of autonomic processes and emotional reactions, it was possible to present a higher number of conditioned stimuli in experiments. Mexidol seems to improve the compensatory and recovery processes after brain injuries: the impaired functions recover faster, the rate of the retrograde degeneration in the lesioned brain structures decreases, phenomena like Monakov's diaschis are not observed etc.
Psychotropic Drugs, Brain Injuries, Conditioning, Classical, Picolines, Animals, Rats, Wistar, Hippocampus, Rats
Psychotropic Drugs, Brain Injuries, Conditioning, Classical, Picolines, Animals, Rats, Wistar, Hippocampus, Rats
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 2 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
