Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The structure of intramolecular triplex DNA: atomic force microscopy study.

Authors: W J, Tiner; V N, Potaman; R R, Sinden; Y L, Lyubchenko;

The structure of intramolecular triplex DNA: atomic force microscopy study.

Abstract

We applied atomic force microscopy (AFM) for direct imaging of intramolecular triplexes (H-DNA) formed by mirror-repeated purine-pyrimidine repeats and stabilized by negative DNA supercoiling. H-DNA appears in atomic force microscopy images as a clear protrusion with a different thickness than DNA duplex. Consistent with the existing models, H-DNA formation results in a kink in the double helix path. The kink forms an acute angle so that the flanking DNA regions are brought in close proximity. The mobility of flanking DNA arms is limited compared with that for cruciforms and three-way junctions. Structural properties of H-DNA may be important for promoter-enhancer interactions and other DNA transactions.

Related Organizations
Keywords

Base Sequence, Molecular Sequence Data, Nucleic Acid Conformation, DNA, Microscopy, Atomic Force, Protein Binding

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    63
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
63
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!