Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Işık University Inst...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Upper bounds for covering total double Roman domination

Authors: Mojdeh, Doost Ali; Teymourzadeh, Atieh;

Upper bounds for covering total double Roman domination

Abstract

Let G = (V, E) be a finite simple graph where V = V (G) and E = E(G). Suppose that G has no isolated vertex. A covering total double Roman dominating function (CT DRD function) f of G is a total double Roman dominating function (T DRD function) of G for which the set {v ? V (G)|f(v) ? 0} is a covering set. The covering total double Roman domination number ?ctdR(G) is the minimum weight of a CT DRD function on G. In this work, we present some contributions to the study of ?ctdR(G)-function of graphs. For the non star trees T, we show that ?ctdR(T) ? 4n(T )+5s(T )?4l(T )/3, where n(T), s(T) and l(T) are the order, the number of support vertices and the number of leaves of T respectively. Moreover, we characterize trees T achieve this bound. Then we study the upper bound of the 2-edge connected graphs and show that, for a 2-edge connected graphs G, ?ctdR(G) ? 4n/3 and finally, we show that, for a simple graph G of order n with ?(G) ? 2, ?ctdR(G) ? 4n/3 and this bound is sharp. Publisher's Version

Country
Turkey
Related Organizations
Keywords

Covering, Total double Roman domination, Tree, Upper bound

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green