
handle: 11729/2523
In this paper the exact and the approximate solutions of fuzzy fractional differential equation, in the sense of Caputo Hukuhara differentiability, with a fuzzy condition are constructed by using the fuzzy Laplace transform. The obtained solutions are expressed in the form of the fuzzy Mittag-Leffler function. The presented procedure is visualized and the graphs of the obtained approximate solutions are drawn by using the GeoGebra package. Publisher's Version
Fractional;Fuzzy calculus;Laplace transform, Fuzzy calculus, Fractional, Laplace transform
Fractional;Fuzzy calculus;Laplace transform, Fuzzy calculus, Fractional, Laplace transform
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
