
handle: 11693/26234
Commonsense reasoning about the physical world, as exemplified by "Iron sinks in water" or "If a ball is dropped it gains speed," will be indispensable in future programs. We argue that to make such predictions (namely, envisioning), programs should use abstract entities (such as the gravitational field), principles (such as the principle of superposition), and laws (such as the conservation of energy) of physics for representation and reasoning. These arguments are in accord with a recent study in physics instruction where expert problem solving is related to the construction of physical representations that contain fictitious, imagined entities such as forces and momenta (Larkin 1983). We give several examples showing the power of physical representations.
Expert problem Ssolving, Artificial intelligence, Artificial Intelligence, Physics, Physical Representations, Physical representations, Reasoning, Expert Problem Solving
Expert problem Ssolving, Artificial intelligence, Artificial Intelligence, Physics, Physical Representations, Physical representations, Reasoning, Expert Problem Solving
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
