Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Archivio istituziona...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
addClaim

Electrical Properties

Authors: PINTO, Nicola; FICCADENTI M.; MORRESI L.;

Electrical Properties

Abstract

The accurate measure of semiconductor electrical properties is a fundamental step for the design and the correct operation of any electronic device. The electrical performance of any device will depend on how the carriers move inside the semiconductor lattice. The measure of the resistivity, the concentration of shallow and deep states, the charge carrier mobility, etc, allow for the design of new and advanced functionalities and for improvement in current device technology. In this chapter we will give a brief overview of the main electronic transport coefficients and experimental techniques used to investigate semiconductor materials and the main solar cell parameters. We have limited our attention to the most common and reliable techniques. Our work has been organised into seven sections. The first and second sections define the conductivity and the mobility of any material in terms of its band structure and looks at some semiconductor properties and the material doping. The third and fourth sections illustrate the main scattering mechanisms of charge carriers in a semiconductor and several experimental techniques to measure thin film resistivity, respectively. The fifth section introduces the Hall effect and defines the Hall coefficient and the Hall mobility, with a description of an experimental method to measure these. In the sixth section we report a brief analysis of deep state defects and we describe the DLTS technique to reveal them in a semiconductor lattice. Finally, in the seventh section we describe the current-voltage technique commonly used to measure the main solar cell parameters.

Country
Italy
Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!