Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Padua research Archi...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Characterization of the complement system in a colonial tunicate: C3 complement receptors and opsonic role of C3

Authors: Peronato A.; Franchi N.; Schiavon L.; Ballarin L.;

Characterization of the complement system in a colonial tunicate: C3 complement receptors and opsonic role of C3

Abstract

The compound ascidian Botryllus schlosseri is a reliable model organism for the study of immunobiology. As an invertebrate, it relies only on innate immunity for its defense. We already demonstrated the presence, in Botryllus, of homologues of mammalian C3, Bf, MBL and MASP1, referred to as BsC3, BsBf, BsMBL and BsMASP, respectively. All the complement components identified so far, are expressed by morula cells, the most abundant circulating hemocytes. In mammals, once the complement system is activated, a cascade of reactions occurs resulting in the cleavage of the third complement component (C3) to C3a and C3b, the former exerting a chemotactic activity, the latter acting as opsonin and, ultimately, activating the lytic pathway. The best-known receptor for C3a in mammals is C3aR, whereas CR1 is the receptor able to recognize and bind C3b on the microbial surfaces. Here, we describe, in B. schlosseri, new genes showing homology with vertebrate C3aR and CR1, respectively, and studied their transcription in the course of the colonial blastogenetic cycle. In addition, we continued our analysis of the role of C3 in Botryllus immunity by studying the modulation of BsC3 transcription during the colonial blastogenetic cycle and the effect of bsc3 knockdown on immune responses. Results indicate that only morula cells, and no other immunocytes type, are labelled by the antisense probe for BsC3aR, whereas phagocytes and young, undifferentiated cells, known as hemoblasts, are the cells stained by the probe for BsCR1. Both the bsc3ar and bscr1 genes are constitutively transcribed. However, a modulation in the extent of transcription occurs during the colonial blastogenetic cycle as the amount of BsC3aR mRNA abruptly decreased at TO, whereas no differences were observed when EC and MC were compared. This is probably related to the renewing of circulating cells at TO, that are replaced by new, differentiating cells entering the circulation in the same period.

Keywords

Botryllus; complement, Botryllus, complement

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 17
  • 17
    views
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
0
Average
Average
Average
17
Green