
handle: 11573/917851
In this dissertation we discuss the deployment of combinatorial optimization methods for modeling and solve real life problemS, with a particular emphasis to two biological problems arising from a common scenario: the reconstruction of the three-dimensional shape of a biological molecule from Nuclear Magnetic Resonance (NMR) data. The fi rst topic is the 3D assignment pathway problem (APP) for a RNA molecule. We prove that APP is NP-hard, and show a formulation of it based on edge-colored graphs. Taking into account that interactions between consecutive nuclei in the NMR spectrum are diff erent according to the type of residue along the RNA chain, each color in the graph represents a type of interaction. Thus, we can represent the sequence of interactions as the problem of fi nding a longest (hamiltonian) path whose edges follow a given order of colors (i.e., the orderly colored longest path). We introduce three alternative IP formulations of APP obtained with a max flow problem on a directed graph with packing constraints over the partitions, which have been compared among themselves. Since the last two models work on cyclic graphs, for them we proposed an algorithm based on the solution of their relaxation combined with the separation of cycle inequalities in a Branch & Cut scheme. The second topic is the discretizable distance geometry problem (DDGP), which is a formulation on discrete search space of the well-known distance geometry problem (DGP). The DGP consists in seeking the embedding in the space of a undirected graph, given a set of Euclidean distances between certain pairs of vertices. DGP has two important applications: (i) fi nding the three dimensional conformation of a molecule from a subset of interatomic distances, called Molecular Distance Geometry Problem, and (ii) the Sensor Network Localization Problem. We describe a Branch & Prune (BP) algorithm tailored for this problem, and two versions of it solving the DDGP both in protein modeling and in sensor networks localization frameworks. BP is an exact and exhaustive combinatorial algorithm that examines all the valid embeddings of a given weighted graph G=(V,E,d), under the hypothesis of existence of a given order on V. By comparing the two version of BP to well-known algorithms we are able to prove the e fficiency of BP in both contexts, provided that the order imposed on V is maintained.
:Scienze matematiche e informatiche [Settori Disciplinari MIUR], EDGE-COLORED GRAPH, tertiary structure elucidation, LONGEST PATH PROBLEMS, TERTIARY STRUCTURE ELUCIDATION, GRAPH EMBEDDING
:Scienze matematiche e informatiche [Settori Disciplinari MIUR], EDGE-COLORED GRAPH, tertiary structure elucidation, LONGEST PATH PROBLEMS, TERTIARY STRUCTURE ELUCIDATION, GRAPH EMBEDDING
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
