
handle: 11570/2073221
On démontre le résultat principal suivant: Soient \(k\) un corps de caractéristique \(p > 0\), \(A\) une \(k\)-algèbre locale noethérienne de dimension \(n\) et d'idéal maximal \(M\). Supposons que les conditions suivantes sont remplies: (i) l'anneau \(A \otimes_k k^{p^{-1}}\) est réduit, (ii) \(A/M\) est une extension séparable de \(k\), (iii) il existe \(x_1, \dots, x_r \in M\) et \(D_1, \dots, D_r \in \text{Der}_k (A)\) telles que \(D_i x_j = \delta_{ij}\), \(D^p_i = 0\). Alors si \(A\) a une \(p\)-base sur \(k\) le sous-anneau \(A' = \{a |AD_i (a) = 0,\;i = 1, \dots, r\}\) a aussi une \(p\)-base sur \(k\). -- Pour démontrer le résultat précédent l'A. généralise le théorème 27.3 du livre de \textit{H. Matsumura}, ``Commutative ring theory'' (Cambridge 1986; Zbl 0603.13001).
\(p\)-basis, Characteristic \(p\) methods (Frobenius endomorphism) and reduction to characteristic \(p\); tight closure, QA1-939, derivation, Modules of differentials, Mathematics
\(p\)-basis, Characteristic \(p\) methods (Frobenius endomorphism) and reduction to characteristic \(p\); tight closure, QA1-939, derivation, Modules of differentials, Mathematics
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
