
handle: 11568/1085212
Color histograms are widely used for content-based image retrieval. Their advantages are efficiency, and insensitivity to small changes in camera viewpoint. However, a histogram is a coarse characterization of an image, and so images with very different appearances can have similar histograms. This is particularly important for large image databases, in which many images can have similar color histograms. We will show how to find a relationship between histograms and elliptic curves, in order to define a similarity color feature based onto parametric elliptic equations. This equations are directly involved in the Fermat's Last Theorem, thus representing a solution which is interesting in terms of theory and parametric properties.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
