Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Universidade Estadua...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 1 versions
addClaim

Biocompatibilidade in vivo de membranas nanoestruturadas de Quitosana/Peo

Authors: Vulcani, V. A.S.; Franzo, V. S.; Rabelo, R. E.; Rabbers, A. S.; Assis, B. M.; D'ávila, M. A.; Antoni, S. M.B.;

Biocompatibilidade in vivo de membranas nanoestruturadas de Quitosana/Peo

Abstract

Electrospinning is a technique that allows the preparation of nanofibers from various materials. Chitosan is a natural and abundant easily obtained polymer, which, in addition to those features, proved to be biocompatible. This work used nanostructured chitosan and polyoxyethylene membranes as subcutaneous implants in Wistar rats to evaluate the biocompatibility of the material. Samples of the material and tissues adjacent to the implant were collected 7, 15, 30, 45 and 60 days post-implantation. Macroscopic integration of the material to the tissues was observed in the samples and slides for histopathological examination that were prepared. It was noticed that the material does not stimulate the formation of adherences to the surrounding tissues and that there is initial predominance of neutrophilia and lymphocytosis, with a declining trend according to the increase of time, featuring a non-persistent acute inflammatory process. However, the material showed fast degradation, impairing the macroscopic observation after fifteen days of implantation. It was concluded that the material is biocompatible and that new studies should be conducted, modifying the time of degradation by changes in obtaining methods and verifying the biocompatibility in specific tissues for biomedical applications.

Country
Brazil
Keywords

Biomaterials, Electrospinning, Nanotechnology

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green