Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Recolector de Cienci...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 2 versions
addClaim

Funciones elípticas

Authors: Vargas Magán, María;

Funciones elípticas

Abstract

La finalidad de este trabajo es introducirnos en la teor´ıa de las funciones el´ıpticas, con una mirada cl´asica desde la teor´ıa de la variable compleja, para luego establecer su relaci´on con las curvas el´ıpticas y formas modulares. Aunque est´en ´ıntimamente relacionados, hemos dividido el trabajo en tres cap´ıtulos diferenciados: funciones el´ıpticas, curvas el´ıpticas y formas modulares. En cada cap´ıtulo hemos expuesto las propiedades m´as destacadas de cada objeto matem´atico. Para ser m´as concretos, en el primer cap´ıtulo veremos como Jacobi entiende las funciones el´ıpticas como cociente de funciones casi el´ıpticas. Weierstrass, por su parte, las entiende como funciones racionales de s´olo dos funciones el´ıpticas. En el segundo cap´ıtulo estudiaremos como es posible identificar una curva el´ıptica definida sobre C con un toro y como toda curva el´ıptica queda determinada por una ´unica funci´on: la funci´on J-invariante. Adem´as, veremos que es posible definir una estructura de grupo en la curva mediante la suma de n´umeros complejos. En el tercer cap´ıtulo, estudiaremos la geometr´ıa subyacente al grupo modular y veremos como sus elementos pueden entenderse como una generalizaci´on de las funciones el´ıpticas. Tambi´en estudiaremos la importancia de la funci´on J entendida como funci´on modular, obteniendo de nuevo resultados relevantes acerca de esta funci´on. Finalizaremos el trabajo enunciando el teorema de Modularidad, teorema que simplifica la relaci´on entre nuestros tres objetos protagonistas.

The purpose of this work is to introduce us to the theory of elliptic functions, with a classical look from the theory of the complex variable, to then establish its relationship with elliptic curves and modular forms. Although they are closely related, we have divided the work into three differentiated chapters: elliptic functions, elliptic curves and modular forms. In each chapter we have explained the most prominent properties of each mathematical object. To be more concrete, in the first chapter we will see how Jacobi understands elliptic functions as quotient of almost elliptical functions. Weierstrass, on the other hand, understands them as rational functions of only two elliptic functions. In the second chapter we will study how it is possible to identify an elliptic curve defined on C with a torus and we will also see that any elliptic curve is determined by a unique function: the J-invariant function. In addition, we will see that it is possible to define a group structure on the curve by adding complex numbers. In the third chapter, we will study the geometry underlying the modular group and we will see how its elements can be understood as a generalization of elliptic functions. We will also study the importance of the function J understood as a modular function, obtaining relevant results about this function. We will finish the work formulating the Modularity Theorem, theorem that simplifies the relationship between our three main objects.

Universidad de Sevilla. Grado en Matemáticas

Country
Spain
Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green