
handle: 11380/1016713
Providing wireless broadband access to rural and remote areas is becoming a big challenge for wireless operators, mostly because of the need for a cost-effective and low energyconsuming mobile backhaul. However, to the best of our knowledge, energy consumption of different options for backhauling of future rural wireless broadband networks has not been studied yet. Therefore, in this paper we assess the energy consumption of future rural wireless broadband network deployments and backhaul technologies. In the wireless segment, two deployment strategies are considered, one with macro base station only, and one with small base stations. In the backhaul segment, two wireless, i.e., microwave and satellite, and one optical fiber based (i.e., long reach passive optical networks) solutions are considered. These options are compared in terms of their ability to satisfy coverage, capacity and QoS requirements of a number of rural users in the time span that goes from 2010 until 2021. From the presented results it is possible to conclude that wireless backhaul solutions can significantly increase the energy consumption of the access network. In contrast, the long reach PON based backhaul has much higher energy efficiency and in the long term might be a better choice for wireless operators.
Wireless broadband access; energy consumption
Wireless broadband access; energy consumption
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
