Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Canada Researcharrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Canada Research
Thesis . 2004
Data sources: Canada Research
MacSphere
Thesis . 2014
Data sources: MacSphere
versions View all 2 versions
addClaim

Blind Signal Separation

Authors: Lu, Jun;

Blind Signal Separation

Abstract

This thesis addresses the blind signal separation (BSS) problem. The essence of the BSS problem is to recover a set of source signals from a group of sensor observations. These observations can be modeled as instantaneous or convolutive mixtures of the sources. Accordingly, the BSS problem is known as blind separation of instantaneously mixed signals or blind separation of convolutively mixed signals. In this thesis, we tackle both problems. For blind separation of instantaneously mixed signals, we first cast the separation problem as an optimization problem using mutual information based criterion, and solve it with an extended Newton's method on the Stiefel manifold. Then, for a special case in which the sources are constant modulus (CM) signals, we formulate the separation problem a constrained minimization problem utilizing the constant modulus property of the signal. Again, we solve it using the Newton's method on the Stiefel manifold. For the problem of blind separation of convolutively mixed signals, which is also known as blind deconvolution problem, we first propose a time domain method. We cast the separation problem as an optimization problem using a mutual information based criterion and solve it using a sequential quadratic programming (SQP) method. Then, we propose a set of higher-order statistics (HOS) based criteria for blind deconvolution. We also discuss the relationship of our proposed criteria and other HOS based criteria. We then propose a frequency domain HOS based blind channel identification approach. In this approach, we identify the channel frequency response by jointly diagonalizing a set of so called polyspectrnm matrices. Finally, we propose a second-order statistics (SOS) based method for blind channel identification. Assuming the channel inputs are cyclostationary signals, we identify the channel frequency response through the singular value decomposition (SVD) of a cyclic cross-spectrum based matrix. Numerical simulations are used throughout this thesis to compare our proposed methods with other methods from the literature and to demonstrate the validity and competitiveness of our proposed methods.

Doctor of Philosophy (PhD)

Country
Canada
Related Organizations
Keywords

Electrical and Computer Engineering

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Related to Research communities
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!