
handle: 11375/29429
Faster charging and availability of charging infrastructure are the two main challenges facing an accelerated transition to sustainable electri ed transportation. Both challenges can be solved by developing modular charging systems that are future proof all while having low running and installation costs. As such, this thesis focuses on developing modular and e cient DC/DC charging solutions with a wide charging voltage range capability to meet the needs of existing and next generation plug-in electric vehicles. The thesis starts with describing its motivation and gives an overview on the impact of charging technologies on the electri fication movement. Then, specifi c objectives and research contributions are laid out to narrow the focus of the reader. A review on existing charging systems, standards, architecture and features is presented. Existing isolated and on-isolated power converter topologies for DC-chargers are analyzed and research gaps in power converters with a wide charging voltage range are highlighted. A new single stage DC/DC converter topology and operation scheme is proposed to extend the charging voltage range. Modeling and analysis of the proposed solution was used to select the transition point between different operating modes. Impedance tolerance and pulse distortion was modeled to analyze the passive current sharing error at light and full load operation. The combination of the proposed topology and unique operating scheme reduced the voltage and current stress per device allowing the use of lower kVA rated devices leading to higher cost savings compared to other solutions. An experimental setup has been developed which showed the excellent performance of the proposed topology. The design and optimization strategy for the proposed dual-secondary dual-active bridge (DAB) converter topology is presented. A converter loss model is developed to take in to account: magnetic, switching, and conduction loss. Then, the design process and quantization scheme to quantize charging pro les into discrete energy points is explained, which entails parametric optimization using a genetic algorithm (GA) to minimize energy loss across widely varying charging pro les based on actual charging data. Comprehensive experimental testing was carried out to validate the proposed design strategy and excellent performance was achieved over an extended operating range. After the review of power magnetics used in isolated chargers, high parasitic capacitance in planar transformers was identi ed as an obstacle in the way of development of chargers, especially in charging applications that demand high switching frequencies or extended low power operation. Therefore, a novel planar transformer structure was proposed with ultra-low winding capacitance. The proposed co-planar transformer was compared to three other planar types to highlight the differences and bene fits. Four different prototypes of planar transformers were built with the same target speci fications, to compare the proposed structure against previous solutions. Impedance testing of the planar prototypes was carried to measure the winding stray capacitance and frequency response. Experimental power testing using a DAB converter setup showed excellent results in reducing voltage overshoot, high frequency oscillations, and power losses. Finally, a 30-kW dual-secondary DAB charging module was designed, implemented, and tested. The purpose of this work is to bridge the engineering gap between a proof of concept and a higher Technology Readiness Level (TRL) mature charging module, focusing more on regulatory standards and control system development. Experimental validation of the liquid cooled module showed excellent performance characteristics.
Doctor of Philosophy (PhD)
Thesis
DC/DC Converter, Wide Output Voltage, Fast Charging, Power Electronics, Dual Active Bridge, Electric Vehicles
DC/DC Converter, Wide Output Voltage, Fast Charging, Power Electronics, Dual Active Bridge, Electric Vehicles
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
