Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Canada Researcharrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Canada Research
Thesis . 2015
Data sources: Canada Research
MacSphere
Thesis . 2015
Data sources: MacSphere
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Modelling Young Star Clusters with AMUSE

Authors: McCloskey, Jessica;

Modelling Young Star Clusters with AMUSE

Abstract

An important research area in modern astrophysics is understanding how molecular clouds form stars and star clusters. These rich clusters within molecular clouds are the dominant mode of star formation in our galaxy, but we know very little about these areas of space due to incomplete observational data. The MYStIX (Massive Young Star-Forming Complex Study in Infrared and X-Ray) project was started to create a detailed catalogue of these regions and the rich star clusters embedded within them. Once the observational data was available, the evolution of these clusters could be investigated in more detail. Current cluster simulations investigate the stars in detail but usually ignore the gas entirely which can be inaccurate, especially in gas mass dominated clusters. We use AMUSE (Astrophysical Multi-purpose Software Environment) to model embedded young clusters with stars and gas, similar to those found by the MYStIX project, and track their evolution over the first few million years of their lifespan while allowing the stars and gas to interact. We are particularly interested in non-spheroidal subclusters and how they can evolve into the spherical structures that we see today.

Master of Science (MSc)

Thesis

Country
Canada
Related Organizations
Keywords

modelling, star cluster

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Related to Research communities
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!