
handle: 11375/15418
This thesis addresses the design of multiple description lattice vector quantizer (MDLVQ) with a general number L of descriptions, L >= 3. In the previous work on MDLVQ with L>= 3, once the central and side lattice codebooks are fixed, the decoding quality is determined for all numbers k of received descriptions. Therefore, it is not possible to achieve tradeoffs between the quality of reconstruction for different values of k, 1= 3. Our first design employs a different reconstruction method than in prior work and a heuristic index assignment algorithm, which uses L-2 parameters to control the distortions for 2 = 3. The structured index assignment is able to control the tradeoff by adjusting the sizes of some L-1 subsets of side lattice points. Another important contribution of the thesis is the derivation of analytical expressions of the distortions for the structured index assignment, under the high resolution assumption. These expressions show that a wide range of distortion values can be achieved.
Master of Applied Science (MASc)
Thesis
lattice quantization, Multiple description coding, high resolution analysis
lattice quantization, Multiple description coding, high resolution analysis
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
