Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

Perspectives in the design of transformerless, low-noise front-ends for detectors of large capacitance and calorimeters in elementary particle physics

Authors: M. BERTOLACCINI; PADOVINI, GIORGIO MICHELE; D. V. CAMIN; P. F. MANFREDI; J. A. PRESTON; L. H. REHN;

Perspectives in the design of transformerless, low-noise front-ends for detectors of large capacitance and calorimeters in elementary particle physics

Abstract

The achievement of adequate signal-to-noise ratios in the measurement of the energy released by ionizing particles in detectors of large capacitance such as, for instance, calorimeter cells, frequently relies upon transformer coupling between detector and preamplifier. Such a solution, however, may not be feasible if the detector is located in a strong magnetic field. This paper discusses the possibilities opened up by a recently developed field effect transistor of large gate area, whose design has been tailored to the applications in front-end preamplifiers for calorimeters and other large capacitance detectors of frequent use in elementary particle physics.

Country
Italy
Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!