<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
handle: 11250/3021108
Chapter 2 describes crowdsourcing, a process where problems are sent outside an organization to a large group of people—a crowd—who can help provide solutions. Online citizen science and online innovation contests are of particular interest because of their societal value. Within innovation, the two selected examples are from IdeaConnection and Climate Co-lab, two innovation intermediaries who host different types of online innovation contests. One of these contests, the IdeaRalley, represents an interesting new crowdsourcing method that allows hundreds of experts to participate in a one-week long intensive idea building process. In online citizen science, Zooniverse (e.g. Galaxy Zoo) and Foldit, are selected as two prominent, but contrasting examples. The online protein folding game Foldit stands out as a particularly successful project that show what amateur gamers can achieve. The game design combines human visual skills with computer power in solving protein-structure prediction problems by constructing three-dimensional structures. Most successful solutions are team performances or achievements made by the entire Foldit gaming community. All the examples in this chapter illustrate successful case stories, and the detailed analysis identify basic problem-solving mechanisms in crowdsourcing.
Chapter 2 in the book Cultural-historical perspectives on collective intelligence. In the era of digital communication, collective problem solving is increasingly important. Large groups can now resolve issues together in completely different ways, which has transformed the arts, sciences, business, education, technology, and medicine. Collective intelligence is something we share with animals and is different from machine learning and artificial intelligence. To design and utilize human collective intelligence, we must understand how its problem-solving mechanisms work. From democracy in ancient Athens, through the invention of the printing press, to COVID-19, this book analyzes how humans developed the ability to find solutions together. This wide-ranging, thought-provoking book is a game-changer for those working strategically with collective problem solving within organizations and using a variety of innovative methods. It sheds light on how humans work effectively alongside machines to confront challenges that are more urgent than what humanity has faced before. This title is also available as Open Access on Cambridge Core.
Large group problem solving, Citizen science games, IdeaRally, Creative crowd community, Climate CoLab, Crowdsourcing skills, Citizen science, Online innovation contests, Transparency, Foldit, Zooniverse, Crowd competition
Large group problem solving, Citizen science games, IdeaRally, Creative crowd community, Climate CoLab, Crowdsourcing skills, Citizen science, Online innovation contests, Transparency, Foldit, Zooniverse, Crowd competition
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |