Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Synthetic protein transduction domains: enhanced transduction potential in vitro and in vivo.

Authors: A, Ho; S R, Schwarze; S J, Mermelstein; G, Waksman; S F, Dowdy;

Synthetic protein transduction domains: enhanced transduction potential in vitro and in vivo.

Abstract

The protein transduction domain (PTD) embedded in the HIV TAT protein (amino acids 47-57) has been shown to successfully mediate the introduction of heterologous peptides and proteins in excess of Mr 100,000 into mammalian cells in vitro and in vivo. We report here that the modeled structure of the TAT PTD is a strong amphipathic helix. On the basis of this information, we synthesized a series of synthetic PTDs that strengthen the alpha-helical content and optimize the placement of arginine residues. Several PTD peptides possessed significantly enhanced protein transduction potential compared with TAT in vitro and in vivo. These optimized PTDs have the potential to deliver both existing and novel anticancer therapeutics.

Related Organizations
Keywords

Models, Molecular, Microscopy, Confocal, Protein Conformation, Flow Cytometry, Protein Structure, Tertiary, Jurkat Cells, Microscopy, Fluorescence, Gene Products, tat, Humans, Amino Acid Sequence, Oligopeptides, Fluorescein-5-isothiocyanate, Signal Transduction

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    324
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
324
Top 10%
Top 1%
Top 1%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!