Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Eastern Mediterranea...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 1 versions
addClaim

Some Schurer Type q-Bernstein Operators

Authors: Vedi, Tuba;

Some Schurer Type q-Bernstein Operators

Abstract

ABSTRACT: In this thesis consist of six chapters. The introduction is given in the first chapter. In the second chapter, some necessary definitions, preliminaries and theorems are given. In this chapter, we also give the important theorems; by Korovkin and Volkov, Bernstein polynomials in one two variables, q-Bernstein, Bernstein-Chlodowsky and q-Bernstein Chlodowsky polynomials. In the third chapter, q-Bernstein Schurer operators are defined. Many properties and results of these polynomials, such as Korovkin type approximation and the rate of convergence of these operators in terms of Lipschitz class functional are given. In the fourth chapter q-Bernstein-Schurer-Chlodowsky operators are introduced. Korovkin type approximation theorem is given and the rate of convergence of this approximation is obtained by means of modulus of continuity of the function is obtained. In the fifth chapter, Schurer-type q-Bernstein Kantorovich operators are defined. Moreover the order of convergence of the operators in terms of modulus of continuity of the derivative of the function, and elements of Lipschitz classes are discussed. In the last chapter, Kantorovich type q-Bernstein operators are defined. Furthermore, Korovkin type approximation theorem is proved and the rate of convergence of this approximation are given. Keywords: q-Bernstein Schurer operators, Korovkin theorem, Schurer Type q-Bernstein Polynomials, Kantorovich type q-Bernstein-Schurer-Chlodovsky operators. …………………………………………………………………………………………………………………………………………………………………………………………………………………… ÖZ: Bu tez altı bölümden olusmaktadır. Birinci bölüm giris kısmı olarak verilmistir. İkinci bölümde, tez boyunca ihtiyaç duyulacak bazı tanımlar, tanımlarla ilgili bazı temel özellikler ve teoremler verilmistir. Ayrıca Korovkin and Volkov Teoremleri, bir ve iki değiskenli Bernstein Polinomları, q-Bernstein Polinomları ve Bernstein Chlodowsky and q-Bernstein Chlodowsky Polinomları incelenmistir. Üçüncü bölümde q-Bernstein Schurer Operatörleri tanımlanmıstır. q-Bernstein Schurer Operatörlerinin yakınsaklığı Korovkin Teoremi yardımıyla ve Liptsitz sınıfındaki yakınsaklığı incelenmistir. Dördüncü bölümde q-Bernstein Schurer-Chlodowsky Operatörü tanımlanmıstır. Korovkin tipli yakınsaklık teoremi, fonksiyonun ve fonksiyonunun türevinin süreklilik modülü yardımıyla yakınsama hızları hesaplanmıstır. Besinci bölümde Schurer tipli q-Bernstein Kantorovich Operatörleri tanımlanmıstır. Bu operatörlerin modüllerinin ve türevlerinin yakınsaklıkları hesaplanmıstır. Altıncı bölümde Kantorovich tipli q-Bernstein-Schurer-Chlodowsky Operatörleri tanımlanmıstır. Bununla birlikte Korovkin tipli teorem yaklasımı ispatlanmıs ve bu yakınsamanın yakınsaklık derecesi hesaplanmıstır. Anahtar Kelimeler: q-Bernstein Schurer Operatörleri, Korovkin Teoremi, Schurer Type q-Bernstein Operatörleri, Kantorovich Type q-Bernstein-Schurer-Chlodovsky operatörleri. Master of Science in Applied Mathematics and Computer Science. Thesis (M.S.)--Eastern Mediterranean University, Faculty of Arts and Sciences, Dept. of Mathematics, 2011. Supervisor: Assoc. Prof. Dr. Mehmet Ali Özarslan.

Keywords

Applied Mathematics and Computer Science, Q-Bernstein Schurer Operators - Schurer Type Q-Bernstein Operators - Kantorovich Type Q-Bernstein Schurer, Mathematical Operators, Chlodowsky Operators - Korovkin Theorem

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green