Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Repository of the Cz...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
addClaim

Quasi-constant time gap in multiple rings of elves

Authors: Halim, A.A.; Abreu, P.; Aglietta, M.; Bakalová, A. (Alena); Blažek, J. (Jiří); Boháčová, M. (Martina); Chudoba, J. (Jiří); +24 Authors

Quasi-constant time gap in multiple rings of elves

Abstract

We present evidence that the time delay between the multiple rings of elves is not caused by the ground reflection of the electromagnetic pulse produced by intracloud lightning. To investigate temporal differences of multi-elves, we analyzed data from four storms occurring at various times and distances from the Pierre Auger Observatory in Malargüe, Argentina. The Auger fluorescence detector's high temporal resolution of 100 ns enabled the frequent observation of multi-elves, accounting for approximately 23% of the events. By examining the traces of 70 double and 24 triple elves, we demonstrate that the time delay between the rings remains relatively constant regardless of the arc distance to the lightning. These results deviate from the trend expected from the electromagnetic pulse (EMP) ground reflection model, which predicts a decreasing time delay with increasing arc distance from an intracloud lightning at a given height. The first emission ring is due to a direct path of the EMP to the ionosphere, with the reflected EMP creating the second ring. Simulations conducted with this model demonstrate that short energetic in-cloud pulses can generate four-peak elves, and a temporal resolution of at least 25 μ s is required to separate them. Therefore, temporal resolution is crucial in the study of multi-elves. Our observations in the Córdoba province, central Argentina, indicate that the current understanding of the mechanism generating these phenomena may be incomplete, and further studies are needed to assess whether multi-elves are more likely related to the waveform shape of the lightning than to its altitude.

Country
Czech Republic
Related Organizations
Keywords

elves, atmospheric phenomena, lightning

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green