Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Repository of the Cz...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Algae and Metals. Chapter 2.3

Authors: Kaštánek, F. (František); Maléterová, Y. (Ywetta); Kaštánek, P.; Šolcová, O. (Olga); Brányiková, I. (Irena);

Algae and Metals. Chapter 2.3

Abstract

Microalgae have a highly developed ability to sorb metals, which could potentially be used to remove them from contaminated waters. In this case, sorption is a combination of metal ions capture both on the surface and inside algae via intracellular ligands. In particular, binding of ions to a carboxyl group is used. Detailed knowledge of the mechanism of binding of metal ions to algae has not been fully acquired. The amount of bound ions depends on the ion, algae and its concentration, pH, temperature, algae metabolism, whether it absorbs in the exponential or stationary phase, etc. This topic is experimentally interesting because it allows us to study how different microalgae react to different metals, whether they are selective in multi-metal mixtures in waste waters, what metal concentrations are the algae able to sustain repeatedly, how the pre-treatment acts to activate binding sites, etc. These issues are covered in a review by Barange et al., 2014. They showed that not all microalgae sorb metals in the same way, even some of the most common green microalgae, whose cultivation is well controlled, are not universally suitable due to the sorption of various heavy metals, such as Pb, Cd, Zn, Ni, Cr (e.g. mainly brown algae Turbinaria conoides significantly sorbed Pb, red algae Polysiphonia lanosa Cr, etc.). Similarly, Kastanek et al., 2015, found that green algae Chlorella vulgaris sorbs Rb\nselectively and does not sorb Li, which could be useful in separating Rb from wastewater after lithium minerals mining. Regarding the fact that natural living material is applied as a biosorbent, a number of contradictory results can be expected depending on a number of factors affecting algal metabolism. Nevertheless, these have not been fully understood yet. Further work aimed at revealing sorption mechanisms of various heavy metal ions would be beneficial.

Country
Czech Republic
Related Organizations
Keywords

sorption mechanisms, algae and metal, experiments

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green