
This article introduces an algorithm for implicit High Dimensional Model Representation (HDMR) of the Bellman equation. This approximation technique reduces memory demands of the algorithm considerably. Moreover, we show that HDMR enables fast approximate minimization which is essential for evaluation of the Bellman function. In each time step, the problem of parametrized HDMR minimization is relaxed into trust region problems, all sharing the same matrix. Finding its eigenvalue decomposition, we effectively achieve estimates of all minima. Their full-domain representation is avoided by HDMR and then the same approach is used recursively in the next time step. An illustrative example of N-armed bandid problem is included. We assume that the newly established connection between approximate HDMR minimization and the trust region problem can be beneficial also to many other applications.
25 pages, 2 figures
Bellman equation, approximate HDMR minimization, Optimization and Control (math.OC), FOS: Mathematics, trust region problem, Dynamic programming, approximate dynamic programming, Mathematics - Optimization and Control
Bellman equation, approximate HDMR minimization, Optimization and Control (math.OC), FOS: Mathematics, trust region problem, Dynamic programming, approximate dynamic programming, Mathematics - Optimization and Control
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
