Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Repozytorium Uniwers...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Cluster Analysis – Symbolic vs. Classical Data

Authors: Wilk, Justyna; Pełka, Marcin;

Cluster Analysis – Symbolic vs. Classical Data

Abstract

Clustering problem is addressed in many contexts and disciplines. Although there are numerous studies on cluster analysis, there is a lack of a review to complete and systematize knowledge of research approach depending on data form. The paper presents a concept of clustering, classifications of cluster analysis methods, comparison of numerical and symbolic taxonomy, specificity of symbolic data as regards classical data, methods of numerical and symbolic data analysis applicable in clustering procedure. Celem artykułu jest usystematyzowanie wiedzy na temat analizy skupień w zależności od rodzaju danych empirycznych opisujących problem badawczy. W artykule zaprezentowano cele analizy skupień, dokonano klasyfikacji metod analizy skupień, porównano metody taksonomii numerycznej i symbolicznej. Omówiono także specyfikę danych symbolicznych w odniesieniu do danych w ujęciu klasycznym oraz ich źródła w badaniach ekonomicznych. Wskazano metody statystyczne, jakie mają zastosowanie w analizie danych klasycznych i symbolicznych na każdym etapie procedury klasyfikacji.

Country
Poland
Keywords

classification, symbolic data analysis, symbolic taxonomy, numerical taxonomy, cluster analysis

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green