Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

Molecular Biology of Desiccation Tolerance in the Cyanobacterium Nostoc commune

Authors: Wright, Deborah J.;

Molecular Biology of Desiccation Tolerance in the Cyanobacterium Nostoc commune

Abstract

The molecular biology of desiccation tolerance was investigated in the cyanobacteria with emphasis on Nostoc commune. Analysis of DNA from 41 samples of desiccated Nostoc spp. of varied age and global distribution led to the amplification of 43 independent tRNALEU(UAA) group 1 intron sequences. Phylogenetic analysis of the entire data set made it possible to define the form species Nostoc commune. The synthase (spsA) and phosphatase (sppA) genes required for the synthesis of sucrose were isolated from cyanobacterium Synechocystis sp. strain PCC 6803 and overexpressed in E. coli in two different vector constructions. Transformants had a marked increased capacity for desiccation tolerance. Sucrose synthesis was confirmed through thin layer chromatography (TLC) analysis of cell extracts from transformants. Long-term stability of DNA in desiccated Nostoc samples was demonstrated by the ability to amplify selected gene loci from samples stored dry for decades. Successful amplification in some samples was possible only after treatment with phenacylthiazolium bromide, a reagent that disrupts covalent cross-links; indicating that the DNA was modified by cross-links that occurred between reducing sugars and the primary amines on the DNA. Abundant superoxide dismutase was released following rehydration of desiccated field material N. commune CHEN after 13 years in the dry state. sodF mRNA was present in the dry material but was turned over within 15 min of rehydration. mRNA levels then rose and appeared to reach steady state levels after 3 hours and remained abundant after 24 hours of rehydration.

Master of Science

Country
United States
Related Organizations
Keywords

Nostoc commune, desiccation tolerance, cyanobacteria, superoxide dismutase

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!